
Simulation Interoperability using the Synthetic Common Operating
Environment in Simulation Based Acquisition

Karin Larsen, Ford Brockman, Chris Burns, Olga Nnedu, Cliff Sons
Quality Research, Inc.

4901 D Corporate Drive
Huntsville, AL 35805

(256)842-0026
e-mail: larsen@rdbewss.redstone.army.mil

Laurie Fraser
AMCOM

Lab Manager, Advanced Prototyping, Engineering and Experimentation Lab
Redstone Arsenal, AL 35898

(256)842-0942
e-mail: laurie@rdbewss.redstone.army.mil

Dr. Bill Hopkinson
Science Applications International Corporation

12479 Research Parkway
Orlando, FL 32826-3248

(407)306-4740
e-mail: William.C.Hopkinson@cpmx.saic.com

Keywords:
Computer Generated Forces, Simulation Interoperability, Reconfigurable

Prototyping, Simulation Based Acquisition, Composable Behavior Technology

Abstract: This paper describes the Synthetic Common Operating Environment (SCOE) software system that
enables Simulation Based Acquisition (SBA) for future combat systems. The paper discusses how the
SCOE system allows the user to reconfigure currently existing entities, prototype new entities, and develop
conceptual components and attach them to entities. Additionally, the user can build Computer Generated
Forces, plan experiments, attach composable behaviors and analyze these new entities in large-scale
battlefield simulations. The SCOE system also provides the user the capability to collect experiment data
for Run time and After-Action-Review on either a Distributed Interactive Simulation (DIS) network or a
High Level Architecture (HLA) network. This paper will also discusses how easily the SCOE software
system can be configured to interoperate with other simulations, such as the Interactive Distributed
Engineering Evaluation and Analysis System (IDEEAS) and One Semi-Automated Forces Test Bed (OTB)
to take full advantage of SCOE capabilities.

1.0 Introduction

 The Synthetic Common Operating Environment
(SCOE) was originally developed as a framework to
leverage and interoperate with evolving DOD and
Army simulation architectures, models, and
constructs. A few simple prototypes of software
components were developed under the direction of
the Mounted Maneuver Battlespace Lab (MMBL)
under an initial project called Simulation Army After
Next and Battle Command Future Environment for
Reengineering (SABER). The current SCOE effort is

a continuation of the SABER work under the
direction of the MMBL. The enhanced SCOE
framework provides a robust suite of enhanced tools
for developing composable entity behaviors,
designing and testing experimental weapon systems,
creating battle force units, and developing scenarios
for both the OTB and IDEEAS simulations. Future
plans include support for additional simulations.

 The SCOE tools can be used to plan a battle in a
one-on-many environment, or folded into a large-

scale battle with other experimental systems and
group organizations. This framework provides the
capability to both inject experimental weapon
systems or sensors into a scenario to perform “what
if” experimentation in an integrated virtual battle
space and the ability to provide real-time and post-
processing support for After Action Reviews (AAR)
and studies. SCOE consists of 4 primary
components: Virtual Workbench (VW), Scenario
Mission Planner (SMP), Composable Behavior Tool
(CBT) and Data Collection and Analysis Tool
(DCAT). Figure 1 depicts the SCOE components
graphically illustrating how each component
interacts.

Figure 1 SCOE System Components

2.0 Background of Simulations

 There were two simulations selected for the initial
SCOE effort, OTB and IDEEAS. These models were
chosen because of the interoperability of their terrain
databases and because of the contractors experience
level with these simulations. The strengths and
weaknesses of each model will be described as well
as a description of how each fits into the overall
SCOE system.

2.1 OTB

 The OTB system provides the capability to create
and control entities within a simulated battlefield.
The goal of OTB is to replicate the outward behavior
of simulated units, their component vehicles and the

weapons systems to a level of realism sufficient for
training and combat development. OTB supports an
extensive list of entities including fixed and rotary
wing aircrafts, ground vehicles, dismounted infantry,
and specialized models such as howitzers, mortars,
minefields, and environmental effects. Simulated
entities can behave autonomously; that is, they can
move, fire, sense, communicate, and react without
operator intervention. These entities can interact with
each other as well as with manned simulators, over a
DIS network.

2.2 IDEEAS

 IDEEAS is a simulation developed to enable rapid
modifications to equipment, terrain, weather, and C3
functionality. The simulation performs as a
stochastically guided, front-loaded system, absent of
operator control inputs during exercise execution in
either standalone or DIS-integrated operations. It is a
fully accredited, high fidelity, engineering level,
force-on-force simulation that combines weapon and
sensor system characteristics, battlefield environment
models, and attack/defend tactics to assess
organization and weapon system effectiveness in a
realistic battlefield environment. In interactive mode,
terrain representation appears as 3D battlefield
imagery, portraying roads, rivers, obstacles, and man-
made features as well as tactical vehicle icons.
Terrain elevation profiles along single selected axes
can be displayed simultaneously in a superimposed
window.

2.3 Interoperability of Simulations

 SCOE is designed to allow a military analyst to
take advantage of the strengths of each of these
models as well as allowing them to participate in
analyses to give a more realistic view of the
battlefield. SCOE provides a GUI based interface to
the underlying IDEEAS and OTB data, providing a
data level bridge between the two models (See Figure
2). This data bridge provided for the user allows data
to be edited from a centralized, single location, as
opposed to being dispersed across many different
files. The data is controlled using a database and
input files are generated electronically as needed.
This minimizes typographical errors and
configuration management problems associated with
maintaining multiple input file sets. Since the
database is designed to be generic, SCOE can easily
be adapted to support text data for most simulations.

Composable
Behaviors

Technology

Data Collection and
Analysis Tool

OTB and IDEEAS
Simulations

Scenario
Mission PlannerVirtual

Workbench

Entities

Simulation
Data

Scenario Data with
Attached Behaviors

Scenario Data
Entities

Scenario Data
Composable
Behaviors

Technology

Data Collection and
Analysis Tool

OTB and IDEEAS
Simulations

Scenario
Mission PlannerVirtual

Workbench

Entities

Simulation
Data

Scenario Data with
Attached Behaviors

Scenario Data
Entities

Scenario Data

 For SCOE, both IDEEAS and OTB are used
concurrently to provide the best analysis for the
minimum price. One of the strengths of the IDEEAS
simulation is that it can handle large counts of entities
on a single system. OTB can only manipulate a
comparably smaller number of entities. However, it
provides a very strong GUI for run-time support,
allowing adjustment to scenarios during experiments.

 SCOE is designed to take advantage of both these
capabilities. Entities and units are created and ported
to both simulations. OTB is used to create the
specific detailed pieces of the scenario. The analyst
develops one scenario for OTB with a small entity
count. These entities are then given composable
behaviors. Then, in order to provide a realistic
battlefield, OTB is used to generate a larger scenario,
which is translated to IDEEAS to round out the field.
Then, both scenarios can be played at one time each
affecting the other to determine the outcome of the
battle.

 All of the specific detailed pieces of the scenario
can be run on independent OTB systems, providing
run-time operator interface and greater detailed
analysis. The remaining entities are transferred to the
single IDEEAS platform. This minimizes the
hardware and time required for the analysis process
and provides a much more realistic picture of the
entities and their interaction in the battlefield. All of
these capabilities make SCOE the ideal set of tools to
use for Simulation Based Acquisition.

3.0 Virtual Workbench

 The Virtual Workbench is the central software
component of the SCOE system and is hosted on a
Windows NT platform. The VW applies object-
oriented methodology to the composition of virtual
systems, the drag and drop functionality and push
button menus provide an intuitive, user-friendly

interface for creating entities, components and
subcomponents. The military analyst can use the
VW to select objects and create systems by defining
subsystem components. The interface provides the
capability to compose weapon systems from its
component pieces. The analyst is able to choose
“what” is to be used on the system, and also “how” it
is to be used. Developing a new system piece by
piece provides a flexible and powerful means of
describing a conceptual battlefield. By using the
VW, an experimental entity can be created in a
fraction of the time it currently takes a military
analyst to define a new entity for a Semi-Automated
Forces (SAF) simulation. Using SCOE significantly
speeds up the process of defining and testing
experimental entities and components.

 In the VW, the user is presented a two-window
display, similar to the Windows Explorer application
on a personal computer (see Figure 3). The left hand
window displays a tree structure of entity classes,
components, and subcomponents. The right hand
window displays specific entities, components and
subcomponents that have been loaded in the database
and default data for a class type. When a specific
component in the right hand window is double-
clicked, a separate wizard allows the user to edit
specific parameters on specific components.

 All entities, components and subcomponents are
stored in a Microsoft Data Engine (MSDE) database.
The VW MSDE database allows the analyst to have
configuration control over the individual pieces of the
system being created.

 One software component of the VW is the Parser
Wizard. The Parser Wizard is used to preload the
VW database with IDEEAS and OTB entities
generated for past experiments. The Parser Wizard
component guides the user through the process of
selecting IDEEAS and OTB simulation files to
import to the database. Once the entities and
components have been parsed and stored in the
database, they are available for the user to copy, edit
or delete. When the user is satisfied with any
modifications made, the Parser Wizard is used to
export the entities and components generated in the
VW to IDEEAS and/or OTB simulation files.

 The VW enables the military analyst to quickly,
easily and intuitively modify the parameters
associated with existing entities, components and
subcomponents. Additionally, entities can be copied
and renamed. For the IDEEAS and OTB
simulations, each entity and subcomponent type has a
default set of associated data. For example, a default

tank might be a T72 tank. If the user creates a new
tank, the T72 data is used to initially populate the
new entry for this new tank. The user can then
customize the tank definition to fit their current use.
Therefore, if the analyst needs all new tanks to have a
different tank configuration, the default record is
edited to accomplish this task.

Figure 3 Virtual Workbench Display

 When a new entity, component or subcomponent
is created or modified, entries are made in the
supporting database tables to correctly define this
new entry for either the IDEEAS or OTB simulation.
Performing automated entry of the components
significantly reduces the amount of manual editing
required, thereby reducing the number errors
introduced in the file editing process. For OTB
alone, the process for creating a new entity requires
more than 11 flat files to be edited. Using the VW,
this edit process is automatically preformed when the
analyst creates a new entry.

3.1 Unit Builder

 For force-on-force simulations, having a robust
Unit Builder is an invaluable tool. The SCOE Unit
Builder provides the analyst with another component
that significantly enhances his ability to quickly
group the experimental entities created by the VW
into units to be used for simulation. The Unit Builder
is hosted on a Windows NT platform and also has the
same look and feel as the VW. A tree with the
defined units types is listed in the left window with
specific units that have been created shown in the
right hand window.

 The concept of units in the current SCOE system
is only applicable to the OTB simulation. IDEEAS is
not designed to model units. The Unit Builder

provides access to currently defined OTB units as
well as the capability to modify the composition of
these units and/or create new OTB units. The Unit
Builder can use all entities, both pre-existing and
newly created by the VW. The same Parser Wizard
described earlier parses the existing unit definition
from OTB.

 When complete, the new unit definitions are
stored to an MSDE database and available for
exporting a new unit file to support integration with
OTB. Since IDEEAS models organization at the
entity level, it does not support units. However, the
information in the database will be used for IDEEAS
when the OTB scenario file is translated to the
IDEEAS movement files.

4.0 Scenario Mission Planner

 The SCOE Scenario Mission Planner (SMP)
allows the user to develop force structures, plan a
scenario, attach behaviors to entities created by VW
and store all scenario information in an MSDE
database allowing the user configuration management
support over the entire process. Scenarios can be
exported from the SMP to support both the IDEEAS
and OTB simulations.

 The SMP tool contains four major components:
Plan View Display (PVD), Scenario Editor, Scenario
Conversion Tool (SCT) and Composable Behavior
Technology (CBT) Tool. When combined, these
components provide the military analyst with a suite
of tools for quickly defining and prototyping
scenarios using experimental entities to support SBA.
Additionally, the SMP tool components provide a
reconfigurable environment to support virtual
prototyping.

4.1 Plan View Display

 Using the Plan View Display, the analyst can
rapidly lay down forces for the mission on a 2-D map
display. Development of a custom 2-D map
component for creating routes, overlays and laying
down forces was evaluated. Given the schedule and
development constraints for the program, it was
decided that an existing PVD would be used. Since
the OTB PVD already provides the user most of the
needed capabilities, it was integrated into the SCOE
effort as the PVD component.

 Using the VW, entities and units are created and
exported to the reader flat files needed for input to
the PVD. The current version of OTB (Build B)
generates the scenario files in ASCII format. This
allows the VW application to parse the files and
make them available for storage in the VW database.
This capability allows the user the flexibility for
configuration management of scenarios as well as
gives the user a way to visualize what units are
contained in which scenarios. Using the OTB ASCII
scenario file also allowed interoperability with the
CBT tool. The input to the CBT tool is the ASCII
generated scenario file.

 To allow IDEEAS entities to also be planned with
the PVD, a special wizard was created allowing the
user to relate IDEEAS and OTB entities. The user
would use the wizard provided in the VW to relate an
IDEEAS and OTB entity. Then, the OTB entity
would be available to the PVD for planning. The
movement data for this new entity is stored in the
OTB ASCII scenario file. Therefore, a translation
process for the movement data is provided by the
SMP allowing this movement data to be translated to
IDEEAS format.

4.2 Scenario Editor

 A Scenario Editor component was created in
SCOE for two main purposes. The first purpose was
to allow the user to visualize scenarios created with
the PVD. The second purpose was to allow the user
to edit other scenario related files. IDEEAS contains
multiple scenario files that can be edited by the user
to define scenarios.

 In order to maintain consistency between the tools
comprising the SCOE system, the Scenario Editor
was designed to have the same look and feel as the
VW. It presents the user with a split-screen display
containing a tree with the simulations supported on
the left side and scenario files associated with a
simulation on the right side.

 The Scenario Editor functionality differs based on
whether the scenario files are IDEEAS-generated or
OTB-generated. The user has the ability to edit and
change the IDEEAS scenario file contents. Because
each scenario file has a unique format, customized
screens were created to allow the user to edit and
change the scenario data. The movement data
generated for IDEEAS from the OTB PVD is
available for the user to review; however, any editing
must be performed using the OTB PVD. Generated

movement data is marked on the screen as
“generated” data and specifies the name of the
scenario file that requires editing in order to make
changes.

 OTB scenario files are available for the user to
visualize only. If changes to an OTB scenario are
required, the user must use the OTB PVD to make
them.

4.3 Composable Behavior
Technology

 There is a growing need for advances in
techniques and methods of semi-automated
representation of friendly and opposing forces within
Advanced Distributed Simulation (ADS). Force
modernization has caused an evolution in the tactics
and doctrine of friendly and opposing forces. In
addition, the focus has shifted from a large
monolithic force to forces supporting more regional
threats. These events have created a situation where
existing battlefield behaviors must be modified and
new battlefield behaviors must be created in a timely
manner. This is particularly challenging as the
specifications for behaviors are costly and time-
consuming to develop, and once specified,
implementation of those behaviors is labor intensive.
A cost-effective methodology for evolving and
developing Semi-Automated Forces (SAF) behaviors
must be developed. A capability is needed where
realistic tactical behaviors can be easily composed
from a set of behavioral primitives. In addition, this
capability must allow the end-user to define new
behaviors to meet his simulation objectives.

 The development of behaviors for simulated
entities in SAF systems is a time-intensive process
that excludes interaction of the end user. There is a
great need for applications that will allow the end
user to compose new behaviors. The Composable
Behavioral Technologies (CBT) system allows for
creation of custom behaviors for simulated entities
for a discrete set of systems. The emphasis of CBT is
to empower the simulation end-users to flexibly
create behaviors meeting their specific simulation or
scenario requirements, and to populate a behavior
repository for potential reuse.

 Company-level Rotary Wing Aircraft (RWA),
tracked and wheeled vehicle behaviors have been
identified as the behavioral domain for the current
SCOE effort. Though OTB is being used for the
purposes of the prototype development and

demonstration, to the greatest extent possible, CBT is
a generalized solution that can be applied to other
entity-based simulations.

4.3.1 CBT Design Philosophy

 The original intent for CBT was to extend
ModSAF to allow non-developers to compose
behaviors. However, that idea limited the technology
to one SAF simulation system and did not promote
the approach to SAF simulations in general. To
create a methodology that is applicable to multiple
SAF systems, the CBT concept was extended to a
composable system that “plugs” into other SAF
simulations. The resultant system architecture is
presented in Figure 4. Because the CBT system is
external to the SAF simulation software (e.g.
ModSAF or OTB), it provides an environment that is
intended to be more flexible for SAF behavioral
experimentation.

 Since CBT is a composable software system, its
development necessitated a language that was easily
ported to other hardware platforms. The Java
language was selected because of its flexibility as a
“compile-once run-anywhere” language. Also, Java
is an object-oriented language that allows for a more
methodical development environment.

4.3.2 System Architecture

 The application components for the CBT
architecture include the Behavior Repository,
Behavior Editor, Execution Engine, Execution Tool
and Repository Manager. These application
components are intended to be independent of the
SAF simulation in order to provide a high level of
reusability across SAF simulation domains. In this
architecture, primitive behaviors are considered to be
closely linked to the SAF simulation system. Thus,
the architecture includes a SAF dependent
component, the SAF Specific Services (SSS). The
SSS provides both simulation and GUI access, which
is supported through two rigorously defined APIs: the
PVD API and the Behavior API. The PVD API
provides a seamless integration between a specific
SAF GUI and the CBT GUI. The Behavior API
allows a CBT composed behavior to succinctly and
directly access specific SAF primitives.

 Users of the CBT system include the SAF
Developer, the Configuration Manager and the CBT
User. The CBT architecture effectively removes the

software engineer (i.e. SAF developer) from the
behavior development cycle except for the
development of behavior primitives.

 The SAF Developer implements behavior
primitives within the SAF simulation system and
stores the references in the Behavior Repository.
Once the behavior primitives are defined, the CBT
User employs the Behavior Editor to compose new
composite behaviors from those primitives. The
composite behaviors developed by the CBT User are
stored in the Behavior Repository and can be used
immediately. Because there is a need for control in
any type of repository, a Repository Manager is
included in the CBT architecture. The Repository
Manager is used by the CBT Configuration Manager
and provides configuration management functions for
the Behavior Repository.

 The Execution Tool allows the CBT User to create
units and assign behaviors to the units. It also
provides the CBT User the ability to create missions
for a SAF simulation unit. A mission is a scenario-
specific sequence of behaviors. The behaviors are
those, which were developed with the Behavior
Editor and stored in the Behavior Repository. When
the CBT User completes mission specification, the
mission data is passed to the Execution Engine. The
Execution Engine schedules the mission behavior and
initiates communication with the SSS. This
communication allows the Execution Engine to direct
execution of primitive behaviors within the SAF
simulation system. It also relays information about
behaviors’ status to the Execution Engine. The status
information is processed by the Execution Engine to
update the scheduled mission behaviors.

4.3.3 Graphical User Interfaces

 An important advantage of CBT is its use of
graphical user interfaces to allow the end-user to
effectively create behaviors for SAF entities. CBT
contains two GUIs: the Behavior Editor and the
Execution Tool.

 The Behavior Editor builds and displays the BRG
in graphical form and enables the user to construct
hierarchical, echelon-based behaviors. The Behavior
Editor provides the user a simplified logic-diagram
format for sequencing primitive behaviors to form
composite behaviors. The intent of this format is to
provide the user a more understandable means for
representing behaviors than other existing methods of
behavior representation such as state diagrams.

 The end-user will not have access to the textual
representation, but only a visual illustration of the
behavior. The visual display will not be
programmatic either, but will relate more to how a
SME describes a behavior.

 The Execution Tool contains a unit editor and a
mission editor. The SME will use both jointly to
define a mission. The unit editor enables the user to
dynamically and explicitly organize a unit. The
mission editor permits the user to create and view
hierarchical missions. By having both the mission
and unit editors work cooperatively, the Execution
Tool gives the user the versatility to create a
tactically realistic SAF mission. The unit’s task
organization can change over the course of a mission.
The Execution Tool also allows for explicit
representation of concurrent behaviors that have
varying start and stop times across the unit hierarchy.

4.3.4 Integration with Virtual
Workbench

 The combination of CBT with the Virtual
Workbench provides the simulation user with a
powerful, robust tool for developing unique entities
and units for training and experimentation. A user
will now be able to create a new, prototype physical
entity, rapidly develop a behavior for the entity and
execute the entity in a simulation seamlessly. This
capability will provide trainers and analysts with the
robust capability to support the requirements for
Simulation Based Acquisition as well as the
emerging Future Combat System.

5.0 Data Collection and Analysis Tool

 Exercise analysis may concentrate on the behavior
of a particular simulation component, or the
aggregate behavior of a collection of components.

This analysis can be used to assist in the simulation
model verification and validation process. But, data
collected during the simulation execution can also be
used to evaluate performance of individual
simulations and/or participants in an After Action
Review. A key benefit of data collection is the
ability to review or replay a portion of the exercise at
various levels of detail using state of the art graphics
projection and visualization capabilities. DCAT was
developed to provide the user with the above
capabilities.

 Originally, DCAT was developed to run on a
UNIX platform and operate in exercises transferring
data over a DIS network. All data collected by
DCAT-UNIX was stored in an object-oriented
database system. During the SCOE effort, the tool
was converted to run on a Windows NT platform and
an HLA interface was added to provide added
flexibility. Additionally, the database system was
converted to an MSDE database. This database
conversion provides added interoperability with the
other SCOE tool set components, which also use an
MSDE database. The MSDE database is royalty free,
allowing the Army flexibility to distribute and use
DCAT in various exercises with a minimum cost to
the end user.

5.1 Real-Time Monitoring

 DCAT is a real-time data capture and analysis
application that collects data from a DIS or HLA
exercise and provides feedback to the user
concerning system performance. The tool is used as
an AAR support tool, an experiment debugging and
monitoring tool, a real-time experiment analysis tool,
and a post-process analytic tool.

 The amount and types of data collected from the
network during an exercise depends on whether
DCAT is running in DIS or HLA mode. If DCAT is
operating in DIS mode, the PDU data selected in the
“Configure” step is captured from the network and
stored in the MSDE database. If DCAT is running in
HLA mode, all HLA data transferred across the
network during an exercise is collected and stored in
the database. This allows the analyst to monitor the
exercise in real-time and make adjustments based on
the data. In real-time mode, 2D and 3D charts are
automatically updated during the experiment run.
See Figure 5. In this mode, the application executes
the Measures of Effectiveness (MOE) queries against
the current database state and automatically updates
graphs based on the results of the queries.

Figure 5 Sample DCAT Chart

5.2 Calculating Measures of
Effectiveness

 DCAT offers the ability to view Measures of
Effectiveness in real time or post processing mode.
DCAT generates log files suitable for import into a
wide variety of Commercial-Off-The-Shelf (COTS)
analytical tools for post-experiment analysis and
manipulation.

 The MOE developer (Figure 6) is based on the
concept of a tuple, which consists of an actor, an
action, and a receiver. The tuple defines a query that
returns a set of records to the application for the
purpose of generating graphs. Filters such as
location, entity identity, bumper number and time
may be applied to the tuple to further refine the set of
objects returned in the query. These filters are
created using the filter definition portion of the MOE
developer. Once the tuples and filters are defined,
the user can combine them using standard algebraic
set notation into meaningful expressions. It is these
expressions that define the MOEs.

5.3 Chart Generation and Database

 DCAT offers charting features that are fast,
efficient and easy to implement. The analyst can
select from a wide range of tailored graphs and charts
including 2D Bar Chart, 3D Bar Chart, Time Series
Plots, Line Graphs, and Box Plots. All graphs and
plots are automatically scaled and labeled.

 Figure 6 MOE Developer

 DCAT utilizes the MSDE database engine for all
data storage and retrieval. MSDE is royalty free
database engine that operates in both local and multi-
user environments. DCAT provides the user with the
capability to browse the database records and filter
them during and after an experiment. Using the
database browser (Figure 7), detailed information
concerning specific systems and/or events can be
viewed and printed as desired. The database browser
can also be used to build an entity filter for use in the
MOE development process by reducing the records
captured in the database view and creating a filter
based on their identities.

5.4 DIS/HLA

 DCAT supports both DIS and HLA. As part of
the configure capability, the user can select the type
of network to use. If the DIS option is selected, the
user can specify the PDU types are to be processed
by DCAT. If the HLA option is selected, DCAT
subscribes to all object classes (data elements) and
interactions (events) for the Federation Object Model
(FOM) used in the current experiment.

6.0 Conclusions

 The use of SCOE will greatly enhance the users
capabilities for SBA. SCOE provides greater
flexibility for less technical operators to adapt to the
simulations. It dramatically reduces the amount of
time needed to introduce new virtual prototypes to
the simulations, and reduces the cost of performing
experiments, both in labor with the reduction of
operators, and in the hardware needed to perform the
experiments. In addition, SCOE provides data
collection capabilities that will speed experiment
debug time and enhance experiment effectiveness by
providing run-time data collection as well as detailed
after action review.

SCOE currently interoperates with IDEEAS and
OTB, but it could be easily adapted to support other
simulations such as SIMNET and CCTT. Since the

U.S. Army has a significant investment in legacy
virtual simulations (SIMNET) and new virtual
simulation (CCTT). In order to maximize the
Army’s investment in these simulations, the
necessary SW and HW tools which allow virtual
simulations to conduct simulation exercises on a
common synthetic natural environment is critical to
the Army of the future. These simulations need to be
able to fully interoperate in a DIS and/or HLA
common environment with an acceptable level of
"fair fight". The work performed on the SCOE
project is a significant step towards achieving and
surpassing this goal.

7.0 Acknowledgements

 The work described in this paper was performed
as a joint project between SAIC in Orlando, FL and
Quality Research, Inc in Huntsville, AL. As the
prime contractor, SAIC provided all the expertise on
the CBT tool. Quality Research was responsible for
development of other SCOE software tools. The
work was performed for the Mounted Maneuver
Battlespace Lab and funded by STRICOM under the
ACTII contract number N61339-00-C-0013.
Many thanks go to Major Joe Burns of the MMBL
for having the vision to fund this work under both the
SCOE and the SABER development efforts. Also, a
special thanks to the entire SAIC and Quality
Research team.

Principle Author Biographies

Dr. William Hopkinson is a Senior Systems
Engineer for SAIC and has over 15 years academic
and military experience in developing simulation-
based training systems. Dr. Hopkinson has been a
project director and lead engineer for several large
simulation training experiments including the Virtual
Integration Experiment, the Digital Training
Exercise, and the Apache Longbow Combat
Identification Study. Dr. Hopkinson received his
Ph.D. in Industrial Engineering in 1995 from the
University of Central Florida. His disseration
focused on validation of man-in-the-loop simulation
for distributed exercises. Dr. Hopkinson is a retired
US Army officer.

Karin R. Larsen is the Software Engineering
Operations Manager in the Missile and Simulation
Group at Quality Research. Ms. Larsen has 17 years
experience in developing software applications for

the U.S. Army and NASA. She was the Program
Manager on the SCOE project for Quality Research.
Ms. Larsen received her Bachelor of Science in
Computer Science from University of Missouri in
1983.

